Climate variation alters the synchrony of host–parasitoid interactions

نویسندگان

  • Miles T Wetherington
  • David E Jennings
  • Paula M Shrewsbury
  • Jian J Duan
چکیده

Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host-parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while O. agrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer-resource stability and biological control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parasitoid–host metapopulation dynamics: the causes and consequences of phenological asynchrony

1. The strength of interaction between the specialist parasitoid Cotesia melitaearum and the host butterfly Melitaea cinxia is influenced by the coincidence of the adult stage of the parasitoid with the larval stage of the host. 2. We show that there is great variation in this developmental synchrony among local populations and among years, ranging from complete synchrony to complete asynchrony...

متن کامل

Synchrony and second-order spatial correlation in host parasitoid systems

1. Recent theoretical studies on population synchrony have focused on the role of dispersal, environmental correlation and density dependence in single species. Trophic interactions have received less attention. We explored how trophic interactions affect spatial synchrony. 2. We considered a host–parasitoid coupled map lattice to understand how the selforganizing spatial patterns generated by ...

متن کامل

Temporal variation and the evolution of a parasitoid foraging cue

This work details theory in which selection favors generalists in a more variable environment. Specifically, in a two-host-one-parasitoid model, temporal variation in host abundances alters the optimal searching strategy and leads to the evolution of more generalist parasitoid strategies. Consistent with empirical observations, parasitoids learn host/plant odors, and use them as a cue to search...

متن کامل

Contrasting effects of heat pulses on different trophic levels, an experiment with a herbivore-parasitoid model system

Under predicted global climate change, species will be gradually exposed to warmer temperatures, and to a more variable climate including more intense and more frequent heatwaves. Increased climatic variability is expected to have different effects on species and ecosystems than gradual warming. A key challenge to predict the impact of climate change is to understand how temperature changes wil...

متن کامل

Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts

Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017